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A Fourier optics approach can be a concise and powerful tool to solve problems in atom optics. In this report, we
adopt it to investigate the kinetic behavior of cold atoms passing through a far red-detuned Gaussian beam. We
demonstrate that the aberration has significant influence on the evolution of the atomic cloud, which is rooted in
the deviation of the Gaussian profile from the quadratic form. In particular, we observe an intriguing effect
analogous to Fresnel’s double prism with cold atoms. The experimental results are in good agreement with
the numerical simulation.
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Atoms have wave-particle duality[1,2]. However, the wave-
length of the thermal de Broglie wave of hot atoms is so
short that their kinetic problems can be dealt with using
the approaches developed for classical particles[3,4]. With
the rapid development of atom cooling techniques, atomic
sampleswith the temperature of severalmicroKelvinswere
achieved by using laser cooling[5–9]. They can be further
cooled via evaporative cooling[10,11] and prepared as ultra-
cold atoms or Bose–Einstein condensates (BECs) with
temperatures of nano-Kelvins[12,13]. Ultracold atoms have
longer thermal de Broglie wavelengths and exhibit more
significant wave properties, such as interference and
diffraction[14–17], so, the kinetic problems of ultracold
atoms should be addressed in a wave picture. The path-
integral approach, which can give strict solutions to kinetic
problems where the wave properties need to be considered,
has been developed[18–20]. However, it is technically compli-
cated and not intuitive.
In this Letter, we propose a simple approach to handling

this kind of problem. Some results in geometric optics
should be reproduced in Fourier optics when the interfer-
ence and diffraction can be neglected[21,22]. Naturally, the
Fourier optic approach can be used to solve problems
in atom optics, such as the transport of atomic clouds
in optical potentials. Here we derive the effective focal
length of a quadratic and a Gaussian beam. In the former
case, the potential is equivalent to an ideal atomic lens.
Then we discuss the case in which the Gaussian potential
cannot be approximated as a quadratic potential. When a
spherical atomic cloud passes through a far-detuned Gaus-
sian laser beam, a novel effect analog of a light beam
passing through a Fresnel’s double prism is observed.
Classically, for a light wave propagating in a medium

with refractive index nðr⃗Þ, the wave vector is

k⃗ðr⃗Þ ¼ 2πnðr⃗Þ
λ0

k⃗; (1)

where λ0 is the wavelength of light in a vacuum and k⃗0 is
the unit vector pointing in the direction of the maximum
light-phase gradient. However, for an atom moving in a
potential well, one can update the wave vector with

k⃗ðr⃗Þ ¼
��������������������������������
2M ½E − V ðr⃗Þ�

�

2

r
k⃗0; (2)

where E is the total atomic energy and V ðr⃗Þ is the poten-
tial. Given that the wave vector of a free particle is�������������������
2ME∕ℏ2

p
k⃗0 in the de Broglie relation, the effective

refractive index of the potential can be expressed as

nðr⃗Þ ¼
��������������������������
1− V ðr⃗Þ∕E

p
: (3)

This equation also can be obtained by comparing the basic
function in geometric optics (eikonal equation) with the
Jacobi–Hamilton equation[21,23]. When jV j ≪ E,

nðr⃗Þ ≈ 1−
V ðr⃗Þ
2E

: (4)

For simplicity, we begin with a cylindrical atomic lens.
Here, we assume that the atomic lens is constituted by
a one-dimensional harmonic potential in the x direction,
which is independent of its position in the z direction.
The potential is given by

V ðx; zÞ ¼ κ

2
x2; (5)

where κ is a constant. Then, we have
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n − 1 ¼ −
κx2

4E
: (6)

We assume that the potential only exists between 0 to h in
the z direction, and the equivalent optical length is

Z
h

0
ðn − 1Þdz ¼ −

κx2h
4E

: (7)

The phase transfer function of an ideal cylindrical lens is

φ ¼ −
x2k
2f

; (8)

where f is the focal length. Comparing Eq. (7) with Eq. (8)
yields

f ¼ 2E
κh

: (9)

Now, we focus on the situation where the atomic lens is
built by a red-detuned Gaussian beam, whose potential is:

Uðx; zÞ ¼ U 0e
− x2

2σ2x
− z2

2σ2z ; (10)

U 0 ¼ U ð0; 0Þ ≈ ℏΩ2ð0; 0Þ
4δ

; (11)

Ω ¼ Γ

�������
I
2I s

s
; (12)

where δ is the detuning of the laser field from the atomic
resonance. Γ is the natural decay rate of the excited state,
which is 2π × 5.75 MHz for the 87Rb D1 (52S1∕2 → 52P3∕2)
transition. I s is the saturation intensity, which is
4.48 mW∕cm2 for a π-polarized light field that is far
detuned from the D1 line. Therefore, we have

n ≈ 1−
U
2E

¼ 1−
ℏΩ2ð0; 0Þe−

x2

2σ2x
− z2

2σ2z

8Eδ
; (13)

where E is the incident kinetic energy. Then, the integral
of n in the z direction is

Z
ndz ≈ Aþ Be

− x2

2σ2x ; (14)

B ¼
������
2π

p
ℏΩ2ð0; 0Þσz
8Ejδj : (15)

The Gaussian function can be expanded as a power series:

e
− x2

2σ2x ≈ 1−
x2

2σ2x
: (16)

Consequently, the optical length is − x2B
2σ2x

, and the ampli-

tude transmissivity is

~tatomðxÞ ¼ exp
�
−ik

x2B
2σ2x

�
: (17)

Compared with the amplitude transmissivity of a thin lens

~tlensðxÞ ¼ exp
�
−ik

x2

2F

�
; (18)

we obtain the focal length as

F ¼ σ2x
B

¼ 4mv2jδjσ2x������
2π

p
ℏΩ2ð0; 0Þσz

: (19)

The same result can be derived from Newtonian
mechanics[24].

Although a Fourier optics approach is a general method,
the most convenient application is to calculate the diffrac-
tion of a plane. Therefore, it is particularly suitable for the
case that external fields only imprint a spatial phase distri-
bution on the wavefront but do not change the atomic den-
sity distribution.We also notice that in an ultracold atomic
cloud with a very high density (∼1013∕cm3, BECs in traps
can reach it), the interactions between atoms could break
the validity of the Fourier optics method. Fortunately,
once the atomic clouds are released from the trap, their
density will decline rapidly. After several milliseconds of
ballistic expansion, the effect of the interaction between
the atoms can be ignored. So the Fourier optics approach
is valid under most of the experimental conditions.

The schematic of our experiment is depicted in Fig. 1.
We load a cold atomic cloud into a quadrupole-Ioffe
configuration (QUIC) trap with trap frequencies
ðωx ;ωy ;ωzÞ ¼ 2π × ð210; 21; 210Þ Hz. Then, we lower the
temperature of the atoms by RF-induced evaporative
cooling. The final temperature can be tuned from about
1 μK to below the Bose–Einstein transition temperature
by setting different final RF frequencies[25]. Both the Gaus-
sian beam and the probe beam are located below the
center of the QUIC trap and propagate parallel to the long
axis of this trap. The focused Gaussian beam overlaps the
center of the atomic cloud after being released from the
QUIC trap for 7 ms. In the z direction, the atoms are con-
fined in a region that is less than 10 μm initially. The cold
atomic cloud ballistically expands after the magnetic trap
is switched off. We acquire the distribution of atomic
clouds from the absorption images. The wavelength of
the laser for the atomic lens is about 795 nm, with 2π ×
50 GHz red detuned from the transition of the D1 line.
The waist size of the Gaussian beam is w0 ¼ 2σ0≈
46 μm, and the Rayleigh length is about 8.5 mm. The laser
beam provides a two-dimensional Gaussian potential
because the Rayleigh length is far larger than the atomic
cloud. The power of the Gaussian beam is about 45 μW,
and the Rabi frequency is Ω ¼ 2π × 71 MHz. The wave-
length of the probe laser is about 780 nm and tuned to
the F ¼ 2 → F ¼ 3 transition of the D2 line. A narrow-
band filter that is transparent at 780 nm and opaque
at 795 nm is inserted into the imaging path. The imaging
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system consists of a battery of lenses with the diffraction
limit of 3 μm. However, the real resolution is about 10 μm
due to residual aberrations.
In our previous work, we observed several exotic phe-

nomena such as the focusing and advancement of atomic
clouds after they passed through a far red-detuned
Gaussian beam. We did numerical simulations via the di-
rect-simulation Monte Carlo approach for thermal atomic
clouds and the non-linearSchrödinger equation forBECs[25].
A theoretical investigation of the one-dimensional focusing
of cold atomic clouds based on Newtonian mechanics was
also performed[24]. Although all these were consistent with
experimental results, they did not provide an intuitive
physical picture. Now we try to understand the nature
of these experiments via a different approach.
In the preceding discussion, we obtained the expression

of the focal length of a Gaussian beam under the approxi-
mation of x ≪ σ. It is valid only when the size of the
atomic cloud is much smaller than the width of the
Gaussian beam (the paraxial approximation). In practice,
however, the size of the atomic cloud is often comparable
to or even larger than that of the Gaussian beam. Higher
order polynomial expansion of the Gaussian potential will
bring aberrations. A Gaussian function has the maximum
of curvature at its center and decreases toward the wings.
Therefore, the different x positions of the Gaussian beam
have different focus lengths. In our previous work, we have
pointed out that this kind of the aberration induces a col-
limation effect of the atoms along the x direction, which is
valid for the initial parameters within a wide range[24,25].
Here, we explore this effect by imaging the atomic cloud
after different flight intervals, as shown in Fig. 2. In
Fig. 2(a), the atoms fly 7 ms after passing through the
Gaussian beam. The position of the atomic cloud at this
moment is very close to the calculated image point under
the approximation of x ≪ σ. A narrow peak emerged from
the broadened background. In Figs. 2(b,c), after flying 9
and 13 ms, the widths of the central peaks only slightly
vary although the image points change distinctly, which
is also clearly illustrated in the density distributions of
the atomic clouds along the x-axis (see Fig. 2(d)). The
analysis based on atomic trajectory approach and the di-
rect Monte Carlo simulation can be found in Refs. [24,25].

A smaller Gaussian beam could exhibit more remark-
able effects. First, the smaller width of the Gaussian beam
causes a shorter focal length, according to Eq. (19). It is
helpful for observing the far-field effects with a finite flight
time. Second, for the Gaussian beam with a smaller size,
its wings overlap with more atoms and have non-ignorable
contributions on the atomic movement. This benefits
the exhibition of the aberration effects since the wings
of the Gaussian beams cannot be approximated as quad-
ratic potentials. In the following experiment, a remarkable
splitting of the atomic cloud manifests the influence of the
aberration induced by the Gaussian beam, which is similar
to a plane light wave passing through Fresnel’s double
prism[21].

We carry out the experiment the same way as seen in
Fig. 2, except the waist size of the Gaussian beam is chosen
to be 28 μm. The power of the Gaussian beam is 24 μW,
and the Rabi frequency is Ω ¼ 2π × 88 MHz. The laser
frequency was still 2π × 50 GHz red detuned from the
transition of the D1 line.

Without the red-detuned Gaussian beam, the atomic
cloud only exhibits a Gaussian profile while it flew 16 ms,
as shown in Fig. 3(a). By turning on the Gaussian beam,
as aforementioned, the distribution of the transmitted
atomic cloud changes dramatically. Figures 3(b)–3(d)
are the images of atomic clouds flying 1, 5, and 9 ms after
they passing through the Gaussian beam, respectively.
The black hole in Fig. 3(b) indicates the position of the

Fig. 1. (a) Schematic of experimental setup. A cold atomic cloud
interacts with a red-detuned Gaussian beam under gravity.
A probe beam propagates along the y-axis for the absorption
images. (b) A side view of the experiment.

Fig. 2. Experimental results of cold atomic clouds passing
through a Gaussian laser beam. (a)−(c) Images of atomic clouds
flying 7, 9, and 13 ms after passing through the Gaussian beam,
respectively. (d) The black, red, and blue lines are the cross curve
of the optical depths of (a)−(c) along the x-axis at the widest
part of the atomic clouds.
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Gaussian beam. When the atomic cloud just penetrates
the Gaussian beam, we can only find a high-density part
in the center with a background. The image point was
located at the place of the atomic cloud flying 1.8 ms after
passing the laser beam. The focal length was obtained by
using Eq. (19). As shown in Fig. 3(c), after a 5 ms flight,
the central part of the atomic cloud still looked like a single
peak. Remarkable splitting appears when the atoms expe-
rience a longer flight. Two narrow bands in the atomic
cloud are obviously visible with a broadening background
in Fig. 3(d). The image of a flight time of 9 ms clearly
showed the image formation of the edge parts of the
Gaussian beam. The atomic image-forming system with
the wings of the Gaussian beam is approximately equiva-
lent to two lenses placed at the two positions and a
Fresnel’s double prism superimposing with them.
Clearly, the thermal motion of atoms also gives rise to

the aberration since the refractive index is dependent on
the kinetic energy of the atoms (Eqs. (3) and (4)). Thus,
we should cool the atoms to a very low temperature to al-
leviate the influence of the thermal motion. In our setup,
for example, the temperature of the atomic cloud is about
600 nK, which is slightly higher than the Bose−Einstein
transition temperature. In this situation, we estimate that
the fluctuations of (n − 1) and the focal length are about
�4%. The fluctuation of the image distance is the same
order as that of the focal length.
On the other hand, the time of flight imaging method is

interestingly found to play an important role in selecting
the velocity of atoms both in the longitudinal (z) direction
and the transverse (x) direction. Given that the initial size
of atomic clouds is very small, the positions of the atoms in
the z direction after time of flight are determined by the
initial velocity distribution of atoms. When we select the
cross curves in the x direction that passes across the center

of the atomic cloud in z direction, these atoms have very
small initial velocities along the z-axis. The miniature size
of the Gaussian beam also plays a role in the selection of
the velocities of the atoms in the x direction. Atoms can
interact with the Gaussian beam having the same velocity
distribution even if the atomic clouds have different tem-
peratures in the trap. This effect was clearly illustrated in
Fig. 6 of Ref. [25]. Therefore, we can select the cross curves
of the optical depth in the center of the atomic cloud to
compare with the numerical simulation.

A numerical simulation has been conducted based on
the Rayleigh−Sommerfeld formulation[21]:

U ðp0Þ ¼
ZZ

P hðp0; p1ÞU ðp1ÞdS ; (20)

where U ðp0Þ is the amplitude at the observation point p0,
and Uðp1Þ is the amplitude at the initial wave front in
the plane aperture

P
. The impulse response hðp0; p1Þ is

given by

hðp0; p1Þ ¼
1
iλ
eikr01

r01
cosðn⃗; r⃗01Þ; (21)

where cosðn⃗; r⃗01Þ represents the cosine of the angle
between the outward normal n⃗ of

P
and vector r⃗01 joining

p0 and p1.
We assume that the phase factor of the atomic wave is

the same as a spherical wave but the amplitude distribu-
tion is a Gaussian function. The amplitude transmissivity
of the atomic wave is given by Eq. (17). Hence, the initial
wave front Uðp1Þ in

P
is a product of the input atomic

wave and the amplitude transmissivity. We assume that
the depth of the atomic lens can be ignored, so the position
of

P
is in the center of the Gaussian beam. The effect of

the gravitational field on the atoms should be considered.
If the gravity field only exists in a slight layer containing
the laser beam, it does not affect the characteristic of the
atomic lens because the gravitational field adds the same
phase factor over all the x coordinates. However, given
that gravity exists in all the spaces, it should affect the
propagation of the matter wave. In a previous work, we
found that the equivalent object distance under gravity
is twice the distance from center of the QUIC trap to
the atomic lens[24]. In order to compare our simulation with
experimental results under gravity, we study the motion of
the atomic cloud in a special frame of reference once the
atomic cloud arrives at the center of the Gaussian beam.
This frame of reference moves with gravitational acceler-
ation g, in which the atomic cloud moves at an approxi-
mately constant velocity in the z direction. The method is
suitable for comparing the numerical analysis with the
experimental results because the image distance is propor-
tional to the flying time in this frame. Taking into account
the finite-size effect of the atomic cloud, the final distribu-
tion of the atomic cloud is a superposition of all intensity
distributions due to different atoms in the initial atomic
cloud. We use an intensity superposition instead of an

Fig. 3. Experimental results. (a) The atomic cloud ballistically
expands 16 ms after being released from the QUIC trap.
(b)−(d) Images of atomic clouds flying 1, 5, and 9 ms after
passing through the Gaussian beam, respectively.
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amplitude superposition because the thermal de Broglie
wavelength of the atoms is much less than the scale of
the atomic cloud in our experiment. However, if we use
BECs as atomic sources, we need to calculate the ampli-
tude superposition. We find our calculations agree with
the experimental data, as shown in Fig. 4. The black lines
in Figs. 4(a) and 4(b) are the experimental results indicat-
ing the cross-sectional line of the atomic cloud along the
x-axis taken at the widest part of the atomic clouds in
Figs. 3(c) and 3(d). The red lines in Fig. 4 are the simu-
lation results. All the simulation parameters are same as
those in experiments. The small deviation between the ex-
perimental and numerical simulations is due to diffraction
and aberration in the imaging system.
In conclusion, we use a Fourier optic method to inves-

tigate the behavior of a cold atomic cloud after passing
through a thin red detuned laser beam. The focus length
of a Gaussian beam is obtained under the approximation
of a paraxial condition. We also study an effect similar
to an atomic Fresnel’s double prism when the paraxial
approximation cannot be satisfied. Compared with the
direct simulation Monte Carlo or path-integral methods,
our approach is simple and comprehensible. It can be used
to handle both coherent and incoherent atomic waves.
These results may provide valuable insights in designing
and manipulating the key ingredients of atom optics.
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Fig. 4. (a) and (b) Cross curves of the optical depths in
Figs. 3(c) and 3(d) (black lines) and numerical simulations
(red lines).

COL 14(7), 070202(2016) CHINESE OPTICS LETTERS July 10, 2016

070202-5


